
Urdu Dependency Parser: A Data-Driven approach

Wajid Ali, Sarmad Hussain

National University of Computer Sciences (NUCES), Lahore, Pakistan; Center for Language

Engineering Al-Khawarizmi Institute of Computer Sciences, University of Engineering and

Technology, Lahore, Pakistan

wajid.ali@msn.com, sarmad.hussain@kics.edu.pk

Abstract

In this paper, we present what we believe to be the

first data-driven dependency parser for Urdu. The

parser was trained and tuned using MaltParser system,

a system for data-driven dependency parsing. The

Urdu dependency treebank (UDT) is used for training

and testing of the Urdu dependency parser, is also

presented first time. The UDT contains corpus of 2853

sentences which are annotated at multiple levels such

as part-of-speech (POS) level, chunk (phrase level)

and dependency relations level. The UDT also

contains information about the token counter, head of

current token. The annotation is done manually to

build UDT. Urdu Dependency Parsing system is

evaluated by conducting a series of experiments. All

experiments are performed using Maltparser default

algorithm with different feature models. Initial, a base

line simple feature model consisting word position,

word, head and dependency relation is used for Urdu

dependency parsing. Then feature model is enhanced

by adding part-of-speech (POS) and chunk (Phrase

level) information. The results of all parsing

experiments are reported. The overall best labeled

accuracy (LA) achieved 74.48% and 90.14% of

unlabeled attachment score (UAS) is achieved. The

error analysis is performed by comparing output data

with treebank test data which manual parsed to

analyze and classify the different types of errors

produced by the parser. This is very useful to identify

the future directions for future expansion of the

treebank and for improving the parsing accuracy.

1. Introduction

Parsing is a process of assigning a syntactic

representation to a natural language sentence and

analyzing the grammatical structure of a natural

language sentence. It is one of the major tasks and core

component in many systems for natural language

processing which help in understanding the natural

language. It is useful in several natural language

processing (NLP) applications like machine translation,

word sense disambiguation, question answering,

summarization and natural language text understanding

etc. There are two structure formalisms such as a

phrase structure (PS) or dependency structure (DS)

formalism is used for assigning the syntactic

representation to a natural language sentence through

parsing. Parsing a sentence according to phrase

structure formalism would essentially output a tree with

phrase structure information. This formalism has been

very popular for fixed order languages especially

English language.

The dependency structure formalism using

dependency grammar presented by Tesni`ere (1959)

has been attracting many adherent, mainly because of

its ability to handle free word order languages. It has

been suggested that free word order languages can be

handled better using the dependency based framework

than the constituency based one [12], [15], [4], [1]. The

basic difference between a constituent (phrase

structure) based representation and a dependency

structure based representation is the lack of non-

terminal nodes in the latter. Parsing a sentence

according to the dependency structure formalism

indicates the dependency relations between the words

in a parse tree. A dependency is a relation between two

words, one of them being a head or regent and the other

a dependent. There are two approaches used for

dependency parsing, data-driven dependency parsing

and grammar driven dependency parsing approach [5].

In this paper, we focus on data-driven dependency

parsing approach only. Data driven parsers need large

amount of manually annotated parsed data which is

called a Treebank. Such data for Urdu was not

available and developed during this research first time.

Dependency Grammar and Parsing is briefly

overviewed in Section 2. Urdu Dependency Treebank

is presented in Section 3. Section 4 describes the

Maltparser. Related work on dependency parsing for

free word order languages is presented in Section 5.

Methodology discussed in Section 6. In Section 7 we

give the results and discussion. We conclude our paper

in Section 8.

2. Dependency Grammar and Parsing

2.1. Dependency grammars

French linguist Tesni`ere (1959) has created

dependency grammar which is usually taken as the

starting point of the modern theoretical tradition of

dependency grammar. Dependency grammar (DG) is a

set of rules that describes the dependencies.

Dependency is an asymmetrical relation between a

head or regent and a dependent. Heads and dependents

are related immediately (e.g. there are no non-

terminals). The observation that drives dependency

grammar is simple: every dependent (word or phrase)

depends on another head, except head of the sentence,

which is the root
1
 of the sentence.

Among the more well-known theories of

dependency grammar, besides the theory of structural

syntax developed by Tesni`ere, we find Word Gram-

mar (WG) proposed by Hudson [12][13], Functional

Generative Description (FGD) [11], Dependency

Unification Grammar (DUG) [10], Meaning-Text

Theory (MTT) [4][16]. In addition, constraint-based

theories of dependency grammars have a strong

tradition, represented by Constraint Dependency

Grammar (CDG) by Menzel and Schr¨oder, 1998) [9],

Weighted Constraint Dependency Grammar (WCDG)

(Schr¨oder, 2002), Functional Dependency Grammar

(FDG) [18], Constraint Grammar (CG) (Karlsson,

1990; Karlsson et al., 1995), Topological Dependency

Grammar (TDG) [3], Extensible Dependency Grammar

(XDG).

2.2. Dependency parsing

The fundamental idea of dependency parsing is that

the parsing crucially involves establishing relations

between words in the sentence. This is illustrated in

figure 1, which depicts the analysis of a short sentence

taken from the Wall Street Journal section of the Penn

Treebank [8].

1
 The root is alternatively termed as head or central element

Figure 1: Dependency structure of English sentence

In this example, the syntactic structure is built up by

recognizing a subject relation (SBJ) from the finite

verb had to the noun news, a nominal modifier relation

(NMOD) from news to the adjective Economic, an

object relation (OBJ) from had to the noun effect, and

so on [8]. Dependency parsing can be broadly divided

into grammar-driven dependency parsing and data-

driven dependency parsing [5]. We briefly discuss both

parsing approaches in subsections.

2.2.1. Grammar-driven parsing. In the grammar-

driven approach, parsing is modeled by the abstract

problem of grammar parsing [14]. A grammar parsing

algorithm is then used to compute the analyses of a

given input string. The grammar may be hand-crafted

or it may be wholly or partially induced from corpus

data. There are two type of grammar-driven parsing

[5], (i) a context free grammar and (ii) constraints

based grammar parsing. Most of the modern grammar-

driven dependency parsers parse by using constraints

based grammars. They view parsing as a constraint-

satisfaction problem and used constraint based

grammar for parsing.

2.2.2. Data-driven parsing. In the data-driven

approach to parse, a formal grammar is no longer a

necessary component of the parsing system [14].

Instead, the mapping from input strings to output

analyses is defined by an inductive mechanism

applying to a text sample from the language to be

analyzed. As no rules are required, corpus is used in

data-driven parsing, mostly treebank is used. There are

also two approaches of modeling a data-driven parsing

[5], i) Graph based models, ii) Transition based

models. MaltParser used transition based approach.

3. Urdu Dependency Treebank

Urdu dependency treebank (UDT) was developed

using a multi-level and multi-representational

annotation such as part-of-speech, chunking and

dependency relation representation. UDT contains

2853 sentences with an average length of 14.03 words

and has 40012 tokens. The UDT texts were chosen

from large corpus containing all type of sentences,

simple or complex. In corpus, small size to large size

sentences available which are simple or complex. As

this is initial effort, so we sort the sentences on the

bases on number of word in it to remove the large

sentences. However, texts including complex

ambiguities were also avoided as such as possible,

being removed from the corpus. All punctuation marks

are also ignored. The corpus is manually annotated

using a POS tagset which contains 35 POS tags [22],

[21], 9 chunk (Phrase Level) tags [21] and small set of

dependency relations [21]. As this initial effort and the

dependency annotation scheme is still undergoing

process, only six dependency relations tags are used for

UDT which are, subject (subj), object (obj), secondary

object (obj2) , adjectival modification (jmod),

adverbial modification (rmod) and noun modification

(nmod).

The treebank data is converted to CoNLL data

format
2
 for MaltParser parsing system. The CoNLL

fields which we used for feature models are: ID (Token

counter, starting at 1 for each new sentence), FORM

(Word form), CPOSTAG (Coarse-grained part-of-

speech tag), POSTAG (Fine-grained POS tag), HEAD

(Head of the current token, which is a value of ID). We

use zero (0) for Head of the sentence and value of ID

for phrases head, DEPREL (Dependency relation to the

HEAD). The CoNLL format and annotation (token

counter, word form, POS tag, chunk tag, head

information and dependency relation) is demonstrated

by this typical sentence example (1).

 ا ز میں ا ب ک کالی گائےد یکھی۔ (1)

 علی نے ب ا ز

Ali ne baazaar mein aik kali gay daikhi

Ali CM market in a black cow see-past

“Ali saw a black cow in the market.”

ID FORM POSTAG CPOSTAG HEAD DEPREL

1
 NNP B-NP 8 subj علی

2
 PP I-NP 8 subj نے

3
 ا ز

 NN B-NP 8 obj2 ب ا ز

4
 PP I-NP 8 obj2 میں

5
 CD B-NP 7 nmod ا ب ک

6
 JJ B-JJP 7 jmod کالی

7
 گائے

NN B-NP 8 obj

8
 د یکھی

VB B-VP 0 main

2
 CoNLL format is a text format for storing sentence structure, like

Subject, Predicate, direct Object. It's not XML and stored in UTF-8

encoding. It is standard format and used by many parser.

4. Maltparser

Transition-based approach is used by MaltParser for

dependency parsing. MaltParser has two essential

components [5]:

 A transition system for mapping sentences to

dependency trees.

 A classifier for predicting the next transition

for every possible system configuration.

Dependency parsing can be realized as deterministic

search through the transition system, guided by the

classifier using two components. With this technique,

parsing can be performed in linear time for projective

dependency trees and quadratic time for arbitrary

(possibly non-projective) trees [5].

4.1. Transition System

There are built-in transition systems in MaltParser

but we limit our attention to the system that has been

used in the parsing experiments: the arc-eager

projective system first described in Nivre [6]. A

configuration in the arc-eager projective system

contains a stack holding partially processed tokens, an

input buffer containing the remaining tokens, and a set

of arcs representing the partially built dependency tree.

There are four possible transitions (where top is the

token on top of the stack and next is the next token in

the input buffer):

 LEFT-ARC(r): Add an arc labeled r from next

to top; pop the stack.

 RIGHT-ARC(r): Add an arc labeled r from

top to next; push next onto the stack.

 REDUCE: Pop the stack.

 SHIFT: Push next onto the stack.

Although this system can only derive projective

dependency trees, the fact that the trees are labeled

allows non-projective dependencies to be captured

using the pseudo-projective parsing technique.

4.2. Classifiers

Classifiers can be induced from treebank data using

a wide variety of different machine learning methods.

The task of the classifier is to map a high-dimensional

feature vector representation of a parser configuration

to the optimal transition out of that configuration. The

features used in our system all represent attributes of

tokens and have been extracted from the fields of the

CoNLL data representation as discussed above in

section 3.

5. Related work to dependency parsing

The related work to dependency parsing using

MaltParser is presented in this section. The statistical

approaches for Japanese dependency analysis are based

on a probabilistic model consisting two steps [19] [20].

First, they estimate modification probabilities.

Secondly, they searched the optimal combination of

dependencies from the all candidates' dependencies.

The maximum sentence accuracy was achieved 42.94%

and dependency relations accuracy was 87.01%.

Another approach of dependency parsing for Japanese

dependency analysis was performed using cascading

chunking [19]. The dependency relations accuracy

improved to 89.29% with 47.53% sentence accuracy. A

deterministic dependency parser based on memory-

based learning is presented and dependency analysis

of Swedish was performed using MaltParser [7]. A

label accuracy score (LAS) of 80.6% was achieved.

A statistical dependency parser was presented for

four languages (Arabic, Bulgarian, Italian and Slovene)

[22]. He used MaltParser for training and parsing

experiments. For Arabic language, Prague Arabic

Dependency Treebank is used which had training

(1,460 sentences; 54,379 tokens) and test (146

sentences; 5,373 tokens) data. The results vary from

50.7% to 66.9% labels accuracy. The BulTreeBank

containing training (10,911 sentences; 159,395 tokens)

and test (2,310 sentences; 36,756 tokens) data is used

for Bulgarian language. The label accuracy was

achieved 67.6%. Italian was parsed trained and test on

Turin University Treebank (training data: 1,500

sentences (44,616 tokens) and tested on 150 sentences

(4,172 tokens)). The reported accuracy is 81.8%. The

Slovene Dependency Treebank contained a training set

(1,534 sentences, 28,750 words) and a test set (402

sentences, 6,390 words) for experiments. Results for

Slovene varied from 50.7% to 73.4% labeled accuracy.

A dependency parser was developed for Thai [17]. It is

part of an ongoing project in developing syntactically

annotated Thai corpus. The corpus consists of 2692

sentences. They achieved 83.64% as the root accuracy,

78.54% as the dependency accuracy and 53.90% as the

complete sentence accuracy.

Two stage constraint based hybrid approach was

presented for Indian languages dependency parsing [2].

They define the two stages and show how different

grammatical construct are parsed at appropriate stages.

The best labeled attachment and labeled accuracies are

68% and 70.6%. Some improvement was made by

working on semantics features [] and the labeled

attachment accuracy was improved to 69.47% and

labeled accuracies are 71.71%.

6. Methodology

Architecture and computational model of Urdu

dependency system is presented in the subsections.

6.1. Architecture

The system architecture of data-driven dependency

parser for Urdu is presented in Figure 2 below. An

Urdu dependency treebank sentence is input of the

Urdu dependency parsing system which used

MaltParser system. The input data is prepared in a in

the form of CoNLL data format. MaltParser is trained

on UDT and parse the given data to mark dependency

relations with heads information.

Figure 2: Urdu Dependency Parser Architecture

6.2. Experiments

Urdu dependency parsing system is evaluated by a

series of experiments. The treebank data is trained and

tested using MaltParser. Nivre arc-eager algorithm is

used for parsing in training and testing but with

different feature models. Six different feature models

are used. In initial, a simple feature model containing

token counter, word form, head of current token and

dependency relation of current token is used. The

feature model is extended by adding part-of-speech and

Input Data in CoNLL

format annotated according

to feature model

MaltParser

Parsed Sentence labeled with

Head & Dependency relations

Parser

Nivre arc-algorithm

Guider

feature model

Learner

chunk tags. So, total number of six experiments are

performed which are listed in table 1.

Table 1: Experiments

No. Parsing Algorithm Features Model
1. Nivre arc-eager ID, FORM, HEAD, DEPREL

2. Nivre arc-eager ID, FORM, POSTAG, HEAD,

DEPREL

3. Nivre arc-eager ID, FORM, CPOSTAG, HEAD,

DEPREL

4. Nivre arc-eager ID, FORM, CPOSTAG (IOB-

Chunk tag), HEAD, DEPREL

5. Nivre arc-eager ID, FORM, POSTAG,

CPOSTAG, HEAD, DEPREL

6. Nivre arc-eager ID, FORM, POSTAG,

CPOSTAG (IOB-Chunk tag),

HEAD, DEPREL

7. Results and Discussion

7.1. Results

MaltParser was trained and tested on an Urdu

Dependency Treebank data which contains 2853

sentences with an average length of 14.03 words and

has 40012 tokens. The training data has 2187 sentences

and test data has 666 sentences. The experiments were

performed. The evaluation metric for MaltParser is,

unlabeled attachment score (UAS), i.e., the percentage

of tokens with correct HEAD and the label accuracy

(LA), i.e., the percentage of tokens with correct

DEPREL. The results are given below in table 2.

Table 2: Experiment Results

No. Experiments
Evaluation

UAS LA

1. Nivre arc-eager with feature model (ID,

FORM, HEAD, DEPREL)

67.59 55.86

2. Nivre arc-eager with feature model (ID,

FORM, POSTAG, HEAD, DEPREL)

70.52 58.28

3. Nivre arc-eager with feature model (ID,

FORM, CPOSTAG, HEAD, DEPREL)

73.29 60.57

4. Nivre arc-eager with feature model (ID,

FORM, CPOSTAG (IOB-Chunk tag),

HEAD, DEPREL)

76.01 62.82

5. Nivre arc-eager with feature model (ID,

FORM, POSTAG, CPOSTAG, HEAD,

DEPREL)

86.91 72.19

6. Nivre arc-eager with feature model (ID,

FORM, POSTAG, CPOSTAG (IOB-

Chunk tag), HEAD, DEPREL)

90.14 74.48

7.2. Discussion

Urdu dependency parsing system is trained and

tested using MaltParser and UDR. Parsing using only

dependency relation and head information leads to very

low accuracy because of unseen word. The parser

ambiguity is over come by adding the information such

as part-of-speech and chunking which helps to

improvement the accuracy of correct dependency

relation labeling and head identification. It is also

observed chunk tags with IOB boundary (IOB-Chunk)

give much better results as compare to use only chunk

tags. There were also cases where the parser failed to

mark any dependency relation for a token within a

chunk. This happened because the token within the

chunk failed to satisfy all the required information. It is

also observed that the incorrect head information leads

to incorrect dependency relation. So, head information

also plays a vital role in correction dependency label.

There are total 2662 relations in testing data which

contains 666 sentences. There are total 679 dependency

relations which are marked incorrect or fail to mark by

MaltParser.

The error analysis is performed by comparing

output data with manual parsed data to analyze and

classify the different types of errors produced by the

parser. This is very useful to identify the future

directions for future expansion of the treebank and for

improving the parsing accuracy. Below, we show the

error analysis for incorrect labels marked for relations

subject, object, object2, jmod, nmod and heads.

7.2.1. Subject Error. Subject conflicts with Object for

nominative case (with zero case markers) and „ko‟ post

positions primarily. This happened because it is

difficult to distinguish between the semantics of a

subject chunk with that of an Object chunk. The errors

of subject are as following:

Table 3: Subject Error

Conflicts with Object Object2 jmod nmod

Subject 316 29 24 19

During manual annotation of treebank, it was observed

that a large number of instances of subject have a zero

post position i.e. no post position and most ko instance

marked object relation. These errors can be minimized

using morphological information.

7.2.2. Object Error. As mentioned in above subject

and Object have a high degree of conflicts. Similarly,

the relation object2 is also difficult to disambiguate

from object. It is also observed that when adjective

appear as an object relation in the sentence, the parser

was unable to label it correctly.

Table 4: Object Error

Conflicts with Subject Object2 jmod nmod

Object 316 151 70 16

As there are not as much object2 relations in the corpus

as subject relation. The morphological information and

some constraint grammar based rules can help to

minimize the error.

7.2.3. Object2 Error. In the case of Object2, parser

records the highest number of conflicts with Object.

The reason for conflict with object is also the same as

above case markers conflict.

Table 5: Object2 Error

Conflicts with Subject Object jmod nmod

Object2 29 151 9 4

The numbers of errors when the parser failed to label

any dependency relation are 41.

7.2.4. Heads Error. The error analysis, as described

above, was done for incorrect and unmarked

dependency labels. We now describe the error analysis

for the head attachment of these dependency labels

because dependency relations accuracy also depends

on Head accuracy. Again, the results for checking

accuracy of dependency labels marked along with

correct attachment with their corresponding parent are

lower. For relations like jmod and nmod whose parent

chunk is generally not a verb group could also be the

reason for lower accuracy.

8. Conclusion

This paper presents a data-driven dependency

parsing approach to parse Urdu sentences. An Urdu

dependency parsing system is trained and tested with

MaltParser system. Urdu dependency treebank

represents the data for training and testing is used in all

experiments. Nivre arc-agear algorithm is used in

parsing system to train and test the data with different

feature models. A series of experiments are conducted

using six feature models to increase the accuracy of

Urdu dependency parsing system. The parser achieved

maximum unlabeled attachment score (UAS) of

90.14% and label attachment of 74.48%.

The results obtained in this research can be

considered promising, entailing a continuation on the

same track and leaving a lot of space for improvement.

The Urdu dependency system is based on data-driven

dependency parsing and MaltParser is also a data

driven system, it requires a relatively large amount of

training data. The parser trained in this research can be

used in order to process new Urdu text which, after

correction by a human expert, could be used to create a

larger dataset. However, a new set of annotation

guidelines together with extended and refined morpho-

syntactic and syntactico-semantic information

especially morphological information and dependency

annotation scheme needs to expand the current

treebank. Punctuation marks should also be taken into

account in a future extended version of the current

treebank. Since the error analysis showed that case

markers and some lexical properties have a rather high

error rate, this needs to be considered too before

annotating new material. Furthermore, the selection of

the texts should be looser, allowing at least complex

sentences.

9. References

[1] A. Bharati, V. Chanitanya and R. Sangal, Natural

Language Processing: A Paninian Perspective, Prentice-Hall

of India, New Delhi, 1994.

[2] A. Bharati, S. Husain, D. M. Sharma and R. Sangal, "A

Two-Stage Constraint Based Dependency Parser for Free

Word Order Languages", in proc. of the COLIPS

International Conference on Asian Language Processing

2008 (IALP), Chiang Mai, Thailand, 2008.

[3] D. Duchier and R. Debusmann, "Topological dependency

trees: A constraint-based account of linear precedence," in

proc. of the 39th Annual Meeting of the Association for

Computational Linguistics (ACL), 2001, pp. 180–187.

[4] I. A. Mel'cuk, Dependency Syntax: Theory and Practice,

State University, Press of New York, 1988.

[5] J. Nivre, Inductive Dependency Parsing, Springer, 2006.

[6] J. Nivre, J. Hall and J. Nilsson, "MaltParser: A Data-

Driven Parser-Generator for Dependency Parsing," in proc.

of the fifth international conference on Language Resources

and Evaluation (LREC2006), May 24-26, 2006, Genoa,

Italy, pp. 2216-2219

[7] J. Nivre, , J. Hall and J. Nilsson, "Memory-based

dependency parsing," in proc. of the 8th Conference on

Computational Natural Language Learning (CoNLL),

Boston, MA, 2004 pp. 49–56.

[8] M. Marcus, B. Santorini, and M.A. Marcinkiewicz,

"Building a large annotated corpus of English: The Penn

Treebank", Computational Linguistics 1993.

[9] P. M. Harper and A. R. Helzerman, "Extensions to

constraint dependency parsing for spoken language

processing", Computer Speech and Language, 1995 pp.187–

234.

[10] P. Hellwig, "Dependency unification grammar," in proc.

of the 11th conference on Computational linguistics,

COLING 1986, Bonn, Germany, 1986, pp. 195–199.

[11] P. Sgall, E. Hajiˇcova and J. Panevova, The meaning of

the sentence in its semantic and pragmatic aspects,

Dordrecht: D. Reidel, 1986.

[12] R. A. Hudson, Word Grammar, Blackwell, 1984.

[13] R. A. Hudson, English Word Grammar, Blackwell,

1990.

[14] S. Kübler, R. McDonald, and J. Nivre, Dependency

Parsing, Morgan & Claypool Publishers series, 2009.

[15] S. M. Shieber, "Evidence against the context freeness of

natural language," In Linguistics and Philosophy, 1985, p. 8,

334–343.

[16] S. Starosta, The Case for Lexicase: An Outline of

Lexicase Grammatical Theory, Pinter Publishers, 1988.

[17] S. Tongchim, R. Altmeyer, V. Sornlertlamvanich and H.

Isahara, "A Dependency Parser for Thai", Proceedings of The

sixth international conference on Language Resources and

Evaluation, Marrakech, Morocco, May 28-30, 2008.

[18] T. J¨arvinen and P. Tapanainen, (1998). Towards an

implementable dependency grammar. In Kahane, S. and

Polgu`ere, A. (eds), Proceedings of the Workshop on

Processing of Dependency-Based Grammars, pp. 1–10.

[19] T. Kudo and Y. Matsumoto, "Japanese dependency

analysis using cascaded chunking," In Sixth Conference on

Natural Language Learning, Taipei, Taiwan, 2002.

[20] T. Kudo and Y. Matsumoto, "Japanese dependency

analysis based on support vector machines," in Joint Sigdat

Conference On Empirical Methods In Natural Language

Processing and Very Large Corpora, R. Nicole,

[21] W. Ali, Data-Driven Dependency Parsing for Urdu, MS

(MPhil), Computer Sciences thesis, Department of Computer

Sciences, National University of Computer and Emerging

Sciences (NUCES), Lahore, Pakistan., un published

[22] W. Ali and S. Hussain, "A hybrid approach to Urdu

Verb Phrase chunking", in proc. The workshop on Asian

Language Resources (ALR-8), COLING 2010, Beijing,

China, 21-28 August 2010, pp. 137–143.

