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Abstract 
 

In this paper, we present what we believe to be the 

first data-driven dependency parser for Urdu. The 

parser was trained and tuned using MaltParser system, 

a system for data-driven dependency parsing. The 

Urdu dependency treebank (UDT) is used for training 

and testing of the Urdu dependency parser, is also 

presented first time. The UDT contains corpus of 2853 

sentences which are annotated at multiple levels such 

as part-of-speech (POS) level, chunk (phrase level) 

and dependency relations level. The UDT also 

contains information about the token counter, head of 

current token. The annotation is done manually to 

build UDT. Urdu Dependency Parsing system is 

evaluated by conducting a series of experiments. All 

experiments are performed using Maltparser default 

algorithm with different feature models. Initial, a base 

line simple feature model consisting word position, 

word, head and dependency relation is used for Urdu 

dependency parsing. Then feature model is enhanced 

by adding part-of-speech (POS) and chunk (Phrase 

level) information. The results of all parsing 

experiments are reported. The overall best labeled 

accuracy (LA) achieved 74.48% and 90.14% of 

unlabeled attachment score (UAS) is achieved. The 

error analysis is performed by comparing output data 

with treebank test data which manual parsed to 

analyze and classify the different types of errors 

produced by the parser. This is very useful to identify 

the future directions for future expansion of the 

treebank and for improving the parsing accuracy.  

 

1. Introduction 
 

Parsing is a process of assigning a syntactic 

representation to a natural language sentence and 

analyzing the grammatical structure of a natural 

language sentence. It is one of the major tasks and core 

component in many systems for natural language 

processing which help in understanding the natural 

language. It is useful in several natural language 

processing (NLP) applications like machine translation, 

word sense disambiguation, question answering, 

summarization and natural language text understanding 

etc. There are two structure formalisms such as a 

phrase structure (PS) or dependency structure (DS) 

formalism is used for assigning the syntactic 

representation to a natural language sentence through 

parsing. Parsing a sentence according to phrase 

structure formalism would essentially output a tree with 

phrase structure information. This formalism has been 

very popular for fixed order languages especially 

English language.  

 

The dependency structure formalism using 

dependency grammar presented by Tesni`ere (1959) 

has been attracting many adherent, mainly because of 

its ability to handle free word order languages. It has 

been suggested that free word order languages can be 

handled better using the dependency based framework 

than the constituency based one [12], [15], [4], [1]. The 

basic difference between a constituent (phrase 

structure) based representation and a dependency 

structure based representation is the lack of non-

terminal nodes in the latter. Parsing a sentence 

according to the dependency structure formalism 

indicates the dependency relations between the words 

in a parse tree. A dependency is a relation between two 

words, one of them being a head or regent and the other 

a dependent. There are two approaches used for 

dependency parsing, data-driven dependency parsing 

and grammar driven dependency parsing approach [5]. 

In this paper, we focus on data-driven dependency 

parsing approach only. Data driven parsers need large 

amount of manually annotated parsed data which is 

called a Treebank. Such data for Urdu was not 

available and developed during this research first time. 



Dependency Grammar and Parsing is briefly 

overviewed in Section 2. Urdu Dependency Treebank 

is presented in Section 3. Section 4 describes the 

Maltparser. Related work on dependency parsing for 

free word order languages is presented in Section 5. 

Methodology discussed in Section 6. In Section 7 we 

give the results and discussion. We conclude our paper 

in Section 8. 

 

2. Dependency Grammar and Parsing 
 

2.1. Dependency grammars 
 

French linguist Tesni`ere (1959) has created 

dependency grammar which is usually taken as the 

starting point of the modern theoretical tradition of 

dependency grammar. Dependency grammar (DG) is a 

set of rules that describes the dependencies. 

Dependency is an asymmetrical relation between a 

head or regent and a dependent. Heads and dependents 

are related immediately (e.g. there are no non-

terminals). The observation that drives dependency 

grammar is simple: every dependent (word or phrase) 

depends on another head, except head of the sentence, 

which is the root
1
 of the sentence.  

 

Among the more well-known theories of 

dependency grammar, besides the theory of structural 

syntax developed by Tesni`ere, we find Word Gram-

mar (WG) proposed by Hudson [12][13], Functional 

Generative Description (FGD) [11], Dependency 

Unification Grammar (DUG) [10], Meaning-Text 

Theory (MTT) [4][16]. In addition, constraint-based 

theories of dependency grammars have a strong 

tradition, represented by Constraint Dependency 

Grammar (CDG) by Menzel and Schr¨oder, 1998) [9], 

Weighted Constraint Dependency Grammar (WCDG) 

(Schr¨oder, 2002), Functional Dependency Grammar 

(FDG) [18], Constraint Grammar (CG) (Karlsson, 

1990; Karlsson et al., 1995), Topological Dependency 

Grammar (TDG) [3], Extensible Dependency Grammar 

(XDG). 

 

2.2. Dependency parsing 
 

The fundamental idea of dependency parsing is that 

the parsing crucially involves establishing relations 

between words in the sentence. This is illustrated in 

figure 1, which depicts the analysis of a short sentence 

taken from the Wall Street Journal section of the Penn 

Treebank [8]. 

                                                           
1
 The root is alternatively termed as head or central element 

 

Figure 1: Dependency structure of English sentence 

In this example, the syntactic structure is built up by 

recognizing a subject relation (SBJ) from the finite 

verb had to the noun news, a nominal modifier relation 

(NMOD) from news to the adjective Economic, an 

object relation (OBJ) from had to the noun effect, and 

so on [8]. Dependency parsing can be broadly divided 

into grammar-driven dependency parsing and data-

driven dependency parsing [5]. We briefly discuss both 

parsing approaches in subsections. 

 

2.2.1. Grammar-driven parsing. In the grammar-

driven approach, parsing is modeled by the abstract 

problem of grammar parsing [14]. A grammar parsing 

algorithm is then used to compute the analyses of a 

given input string. The grammar may be hand-crafted 

or it may be wholly or partially induced from corpus 

data. There are two type of grammar-driven parsing 

[5], (i) a context free grammar and (ii) constraints 

based grammar parsing. Most of the modern grammar-

driven dependency parsers parse by using constraints 

based grammars. They view parsing as a constraint-

satisfaction problem and used constraint based 

grammar for parsing. 

 

2.2.2. Data-driven parsing. In the data-driven 

approach to parse, a formal grammar is no longer a 

necessary component of the parsing system [14]. 

Instead, the mapping from input strings to output 

analyses is defined by an inductive mechanism 

applying to a text sample from the language to be 

analyzed. As no rules are required, corpus is used in 

data-driven parsing, mostly treebank is used. There are 

also two approaches of modeling a data-driven parsing 

[5], i) Graph based models, ii) Transition based 

models. MaltParser used transition based approach. 

 

3. Urdu Dependency Treebank 
 

Urdu dependency treebank (UDT) was developed 

using a multi-level and multi-representational 

annotation such as part-of-speech, chunking and 

dependency relation representation. UDT contains 

2853 sentences with an average length of 14.03 words 

and has 40012 tokens. The UDT texts were chosen 

from large corpus containing all type of sentences, 

simple or complex. In corpus, small size to large size 



sentences available which are simple or complex. As 

this is initial effort, so we sort the sentences on the 

bases on number of word in it to remove the large 

sentences.  However, texts including complex 

ambiguities were also avoided as such as possible, 

being removed from the corpus. All punctuation marks 

are also ignored. The corpus is manually annotated 

using a POS tagset which contains 35 POS tags [22], 

[21], 9 chunk (Phrase Level) tags [21] and small set of 

dependency relations [21]. As this initial effort and the 

dependency annotation scheme is still undergoing 

process, only six dependency relations tags are used for 

UDT which are, subject (subj), object (obj), secondary 

object (obj2) , adjectival modification (jmod), 

adverbial modification (rmod) and noun modification 

(nmod). 

 

The treebank data is converted to CoNLL data 

format
2
 for MaltParser parsing system. The CoNLL 

fields which we used for feature models are: ID (Token 

counter, starting at 1 for each new sentence), FORM 

(Word form), CPOSTAG (Coarse-grained part-of-

speech tag), POSTAG (Fine-grained POS tag), HEAD 

(Head of the current token, which is a value of ID). We 

use zero (0) for Head of the sentence and value of ID 

for phrases head, DEPREL (Dependency relation to the 

HEAD). The CoNLL format and annotation (token 

counter, word form, POS tag, chunk tag, head 

information and dependency relation) is demonstrated 

by this typical sentence example (1). 

 

 ا ز  میں ا ب ک کالی گائےد یکھی۔ (1)

 

 علی نے ب ا ز

Ali ne baazaar mein aik kali gay daikhi 

Ali CM market in a black cow see-past 

“Ali saw a black cow in the market.” 

 
ID FORM POSTAG CPOSTAG HEAD DEPREL 

1 
 NNP B-NP 8 subj علی

2 
 PP I-NP 8 subj نے

3 
 ا ز 

 

 NN B-NP 8 obj2 ب ا ز

4 
 PP I-NP 8 obj2 میں

5 
 CD B-NP 7 nmod ا ب ک

6 
 JJ B-JJP 7 jmod کالی

7 
 گائے

NN B-NP 8 obj 

8 
 د یکھی

VB B-VP 0 main 

 

                                                           
2
 CoNLL format is a text format for storing sentence structure, like 

Subject, Predicate, direct Object. It's not XML and stored in UTF-8 

encoding. It is standard format and used by many parser. 

4. Maltparser 
 

Transition-based approach is used by MaltParser for 

dependency parsing. MaltParser has two essential 

components [5]: 

 A transition system for mapping sentences to 

dependency trees. 

 A classifier for predicting the next transition 

for every possible system configuration. 

Dependency parsing can be realized as deterministic 

search through the transition system, guided by the 

classifier using two components. With this technique, 

parsing can be performed in linear time for projective 

dependency trees and quadratic time for arbitrary 

(possibly non-projective) trees [5]. 

 

4.1. Transition System 
 

There are built-in transition systems in MaltParser 

but we limit our attention to the system that has been 

used in the parsing experiments: the arc-eager 

projective system first described in Nivre [6]. A 

configuration in the arc-eager projective system 

contains a stack holding partially processed tokens, an 

input buffer containing the remaining tokens, and a set 

of arcs representing the partially built dependency tree. 

There are four possible transitions (where top is the 

token on top of the stack and next is the next token in 

the input buffer): 

 LEFT-ARC(r): Add an arc labeled r from next 

to top; pop the stack. 

 RIGHT-ARC(r): Add an arc labeled r from 

top to next; push next onto the stack. 

 REDUCE: Pop the stack. 

 SHIFT: Push next onto the stack. 

 

Although this system can only derive projective 

dependency trees, the fact that the trees are labeled 

allows non-projective dependencies to be captured 

using the pseudo-projective parsing technique. 

 

4.2. Classifiers 
 

Classifiers can be induced from treebank data using 

a wide variety of different machine learning methods. 

The task of the classifier is to map a high-dimensional 

feature vector representation of a parser configuration 

to the optimal transition out of that configuration. The 

features used in our system all represent attributes of 

tokens and have been extracted from the fields of the 



CoNLL data representation as discussed above in 

section 3. 

 

5. Related work to dependency parsing 
 

The related work to dependency parsing using 

MaltParser is presented in this section. The statistical 

approaches for Japanese dependency analysis are based 

on a probabilistic model consisting two steps [19] [20]. 

First, they estimate modification probabilities. 

Secondly, they searched the optimal combination of 

dependencies from the all candidates' dependencies. 

The maximum sentence accuracy was achieved 42.94% 

and dependency relations accuracy was 87.01%. 

Another approach of dependency parsing for Japanese 

dependency analysis was performed using cascading 

chunking [19]. The dependency relations accuracy 

improved to 89.29% with 47.53% sentence accuracy. A 

deterministic dependency parser based on memory-

based learning is presented and   dependency analysis 

of Swedish was performed using MaltParser [7]. A 

label accuracy score (LAS) of 80.6% was achieved.  

 

A statistical dependency parser was presented for 

four languages (Arabic, Bulgarian, Italian and Slovene) 

[22]. He used MaltParser for training and parsing 

experiments. For Arabic language, Prague Arabic 

Dependency Treebank is used which had training 

(1,460 sentences; 54,379 tokens) and test (146 

sentences; 5,373 tokens) data. The results vary from 

50.7% to 66.9% labels accuracy. The BulTreeBank 

containing training (10,911 sentences; 159,395 tokens) 

and test (2,310 sentences; 36,756 tokens) data is used 

for Bulgarian language. The label accuracy was 

achieved 67.6%.   Italian was parsed trained and test on 

Turin University Treebank (training data: 1,500 

sentences (44,616 tokens) and tested on 150 sentences 

(4,172 tokens)). The reported accuracy is 81.8%. The 

Slovene Dependency Treebank contained a training set 

(1,534 sentences, 28,750 words) and a test set (402 

sentences, 6,390 words) for experiments.  Results for 

Slovene varied from 50.7% to 73.4% labeled accuracy. 

A dependency parser was developed for Thai [17]. It is 

part of an ongoing project in developing syntactically 

annotated Thai corpus. The corpus consists of 2692 

sentences. They achieved 83.64% as the root accuracy, 

78.54% as the dependency accuracy and 53.90% as the 

complete sentence accuracy. 

 

Two stage constraint based hybrid approach was 

presented for Indian languages dependency parsing [2]. 

They define the two stages and show how different 

grammatical construct are parsed at appropriate stages. 

The best labeled attachment and labeled accuracies are 

68% and 70.6%. Some improvement was made by 

working on semantics features [] and the labeled 

attachment accuracy was improved to 69.47% and 

labeled accuracies are 71.71%. 

 

6. Methodology 
 

Architecture and computational model of Urdu 

dependency system is presented in the subsections. 

 

6.1. Architecture 
 

The system architecture of data-driven dependency 

parser for Urdu is presented in Figure 2 below. An 

Urdu dependency treebank sentence is input of the 

Urdu dependency parsing system which used 

MaltParser system. The input data is prepared in a in 

the form of CoNLL data format. MaltParser is trained 

on UDT and parse the given data to mark dependency 

relations with heads information. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Urdu Dependency Parser Architecture 

6.2. Experiments 
 

Urdu dependency parsing system is evaluated by a 

series of experiments. The treebank data is trained and 

tested using MaltParser. Nivre arc-eager algorithm is 

used for parsing in training and testing but with 

different feature models. Six different feature models 

are used. In initial, a simple feature model containing 

token counter, word form, head of current token and 

dependency relation of current token is used. The 

feature model is extended by adding part-of-speech and 

Input Data in CoNLL 

format annotated according 

to feature model 

 

MaltParser 

Parsed Sentence labeled with 

Head & Dependency relations 

Parser 

Nivre arc-algorithm 

Guider  

feature model 

Learner 



chunk tags. So, total number of six experiments are 

performed which are listed in table 1.  

 
Table 1: Experiments 

No. Parsing Algorithm Features Model 
1. Nivre arc-eager ID, FORM, HEAD, DEPREL 

2. Nivre arc-eager ID, FORM, POSTAG, HEAD, 

DEPREL 

3. Nivre arc-eager ID, FORM, CPOSTAG, HEAD, 

DEPREL 

4. Nivre arc-eager ID, FORM, CPOSTAG (IOB-

Chunk tag), HEAD, DEPREL 

5. Nivre arc-eager ID, FORM, POSTAG, 

CPOSTAG, HEAD, DEPREL 

6. Nivre arc-eager ID, FORM, POSTAG, 

CPOSTAG (IOB-Chunk tag), 

HEAD, DEPREL 

 

7. Results and Discussion 
 

7.1. Results 
 

MaltParser was trained and tested on an Urdu 

Dependency Treebank data which contains 2853 

sentences with an average length of 14.03 words and 

has 40012 tokens. The training data has 2187 sentences 

and test data has 666 sentences. The experiments were 

performed. The evaluation metric for MaltParser is, 

unlabeled attachment score (UAS), i.e., the percentage 

of tokens with correct HEAD and the label accuracy 

(LA), i.e., the percentage of tokens with correct 

DEPREL. The results are given below in table 2. 

 
Table 2: Experiment Results 

No. Experiments 
Evaluation 

UAS LA 

1. Nivre arc-eager with feature model (ID, 

FORM, HEAD, DEPREL) 

67.59 55.86 

2. Nivre arc-eager with feature model (ID, 

FORM, POSTAG, HEAD, DEPREL) 

70.52 58.28 

3. Nivre arc-eager with feature model (ID, 

FORM, CPOSTAG, HEAD, DEPREL) 

73.29 60.57 

4. Nivre arc-eager with feature model (ID, 

FORM, CPOSTAG (IOB-Chunk tag), 

HEAD, DEPREL) 

76.01 62.82 

5. Nivre arc-eager with feature model (ID, 

FORM, POSTAG, CPOSTAG, HEAD, 

DEPREL) 

86.91 72.19 

6. Nivre arc-eager with feature model (ID, 

FORM, POSTAG, CPOSTAG (IOB-

Chunk tag), HEAD, DEPREL) 

90.14 74.48 

 

7.2. Discussion 
 

Urdu dependency parsing system is trained and 

tested using MaltParser and UDR. Parsing using only 

dependency relation and head information leads to very 

low accuracy because of unseen word. The parser 

ambiguity is over come by adding the information such 

as part-of-speech and chunking which helps to 

improvement the accuracy of correct dependency 

relation labeling and head identification. It is also 

observed chunk tags with IOB boundary (IOB-Chunk) 

give much better results as compare to use only chunk 

tags. There were also cases where the parser failed to 

mark any dependency relation for a token within a 

chunk. This happened because the token within the 

chunk failed to satisfy all the required information. It is 

also observed that the incorrect head information leads 

to incorrect dependency relation. So, head information 

also plays a vital role in correction dependency label. 

There are total 2662 relations in testing data which 

contains 666 sentences. There are total 679 dependency 

relations which are marked incorrect or fail to mark by 

MaltParser. 

The error analysis is performed by comparing 

output data with manual parsed data to analyze and 

classify the different types of errors produced by the 

parser. This is very useful to identify the future 

directions for future expansion of the treebank and for 

improving the parsing accuracy. Below, we show the 

error analysis for incorrect labels marked for relations 

subject, object, object2, jmod, nmod and heads.  

 

7.2.1. Subject Error. Subject conflicts with Object for 

nominative case (with zero case markers) and „ko‟ post 

positions primarily. This happened because it is 

difficult to distinguish between the semantics of a 

subject chunk with that of an Object chunk. The errors 

of subject are as following: 

Table 3: Subject Error 

Conflicts with Object Object2 jmod nmod 

Subject 316 29 24 19 

During manual annotation of treebank, it was observed 

that a large number of instances of subject have a zero 

post position i.e. no post position and most ko instance 

marked object relation. These errors can be minimized 

using morphological information. 

7.2.2. Object Error. As mentioned in above subject 

and Object have a high degree of conflicts. Similarly, 

the relation object2 is also difficult to disambiguate 

from object. It is also observed that when adjective 

appear as an object relation in the sentence, the parser 

was unable to label it correctly.  



Table 4: Object Error 

Conflicts with Subject Object2 jmod nmod 

Object 316 151 70 16 

 

As there are not as much object2 relations in the corpus 

as subject relation. The morphological information and 

some constraint grammar based rules can help to 

minimize the error. 

 

7.2.3. Object2 Error. In the case of Object2, parser 

records the highest number of conflicts with Object. 

The reason for conflict with object is also the same as 

above case markers conflict.  

Table 5: Object2 Error 

Conflicts with Subject Object jmod nmod 

Object2 29 151 9 4 

 

The numbers of errors when the parser failed to label 

any dependency relation are 41.  

 

7.2.4. Heads Error. The error analysis, as described 

above, was done for incorrect and unmarked 

dependency labels. We now describe the error analysis 

for the head attachment of these dependency labels 

because dependency relations accuracy also depends 

on Head accuracy. Again, the results for checking 

accuracy of dependency labels marked along with 

correct attachment with their corresponding parent are 

lower. For relations like jmod and nmod whose parent 

chunk is generally not a verb group could also be the 

reason for lower accuracy. 

 

8. Conclusion 
 

This paper presents a data-driven dependency 

parsing approach to parse Urdu sentences. An Urdu 

dependency parsing system is trained and tested with 

MaltParser system. Urdu dependency treebank 

represents the data for training and testing is used in all 

experiments. Nivre arc-agear algorithm is used in 

parsing system to train and test the data with different 

feature models. A series of experiments are conducted 

using six feature models to increase the accuracy of 

Urdu dependency parsing system. The parser achieved 

maximum unlabeled attachment score (UAS) of 

90.14% and label attachment of 74.48%.  

The results obtained in this research can be 

considered promising, entailing a continuation on the 

same track and leaving a lot of space for improvement. 

The Urdu dependency system is based on data-driven 

dependency parsing and MaltParser is also a data 

driven system, it requires a relatively large amount of 

training data. The parser trained in this research can be 

used in order to process new Urdu text which, after 

correction by a human expert, could be used to create a 

larger dataset. However, a new set of annotation 

guidelines together with extended and refined morpho-

syntactic and syntactico-semantic information 

especially morphological information and dependency 

annotation scheme needs to expand the current 

treebank. Punctuation marks should also be taken into 

account in a future extended version of the current 

treebank. Since the error analysis showed that case 

markers and some lexical properties have a rather high 

error rate, this needs to be considered too before 

annotating new material. Furthermore, the selection of 

the texts should be looser, allowing at least complex 

sentences. 
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